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Outline

I Introduction

I Inference from spatial data.

I Inference from a single remote sensing data set.

I Inference from multiple remote sensing data sets: Spatial-Statistical Data
Fusion (SSDF)

I Spatio-Temporal Data Fusion (STDF)

I STDF for two processes

I Application: infer CO2 in the lower-atmosphere from ACOS/GOSAT and
AIRS.
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Introduction

A family of inference problems:

Infer the true field from two different 
remote sensing images of it at a 

single time.

(Single process, multiple source 
spatial data fusion)

Infer the true field (single quantity) 
from one remote sensing image of 

it at a single time point.

(Fixed Rank kriging)

Infer true values of two fields from 
two different remote sensing 

images at a single time.

(Muliple process, multiple source 
spatial data fusion)

Infer the true field from two different 
remote sensing images of it at 

multiple time points.

(Single process, multiple source 
spatio-temporal data fusion)

Infer the true field (single quantity) 
from one remote sensing image of 

it at multiple time points.

(Fixed Rank filtering)

Infer true values of two fields from 
two different remote sensing 

images at multiple time points.

(Muliple process, multiple source
spatio-temporal data fusion)

Exploit spatial 
correlations

Exploit spatial and 
temporal correlations

True Instrument
1

Instrument
2

t = 1

t = 2

t = 3

t = 4
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Inference from spatial data

I Let s1 and s2 be the (lat,lon) pairs of two point locations.

I Let Y (·) be a random variable representing the value of a quantity of
interest at the location of its argument.
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slices of the joint pdf of Y (s1) and Y (s2)

at fixed values of Y (s2).
top-down view

E [Y (s1)|Y (s2)] = projection of the slice means onto the floor is a line (linear regression).

E [·] = expected value. [Y (s1)|Y (s2)] = conditional distribution ofY (s1) givenY (s2).
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Inference from spatial data

Kriging:

Z(s1) = Y (s1) + �(s1)

Z(s2) = Y (s2) + �(s2)

Z(s3) = Y (s3) + �(s3)

Z(s4) = Y (s4) + �(s4)Y (s4)

Y (s3)

Y (s2)

Y (s1)

Y (s0) Y (s0)

Thickness of lines connecting locations indicates strength of spatial correlation.

Cov(Y (si), Y (sj)) = C(si , sj)

Σ = [C(si , sj)]

Cov(Z(si), Z(sj)) = C(si , sj), (�’s independent)

Cov(Z(si), Y (s0)) = C(si , s0)

Ŷ (s0) = as0
�Z,

Z = (Z(s1), Z(s2), Z(s3), Z(s4))
�
.

c(s0) ≡ (C(s1, s0), . . . , C(s4, s0))
�
.

a minimizes E(Y (s0)− a�Z)2

subject to E(Ŷ (s0)) = E(Y (s0)).

a = c(s0)Σ
−1 This could be a 

computational problem!

The best linear unbiased

estimator of Y (s0) is
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Inference from remote sensing data

How to infer (A) given only (E)?

True Discretized With variance With bias With missing

Y (s) Bm

Z(Bm) = Y (Bm) + �(Bm)

�(Bm) ∼ N(c, σ2� )

Z = (Z(B1), . . . , Z(BN))
�

N = number non-missing pixels

Y (Bm) =
1

|Bm|

�

s∈Bm
Y (s) ds

(A) (B) (C) (D) (E)

I Remote sensing data are spatial aggregates over footprints.

I Inference desired at the point-level (on a fine grid of points, usually).
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Change of Support and Fixed Rank Kriging

I It is still true that the best linear unbiased
estimator of Y (s0) is

Ŷ (s0) = a′s0 Z

even though the elements of Z are block
values.

I as0 now involves covariances between points and blocks, and between
blocks and blocks.

I Requires inversion of N × N covariance matrix Σ, N may be very large
(number of pixels).

I Usual assumptions of isotropy and stationarity are hard to justify.

I Alternative model that overcomes these problems is provided by Fixed
Rank Kriging (FRK) and the Spatial Random Effects (SRE) model (Cressie
and Johannesson, 2008).
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Spatial-Statistical Data Fusion (SSDF)

True Instrument 1 Instrument 2

I Two instruments: optimal estimator of Y (s0) is Ŷ (s0) = a′1s0
Z1 + a′2s0

Z2.

I Requires estimating cross-covariances between blocks in different data
sets, and estimating and correcting for different measurement error biases
and variances.

I All that can be incorporated into the constrained minimization of

E
(

Y (s0)− Ŷ (s0)
)2

. See Nguyen (2009) for details.

I Conceptually, SSDF can be thought of as FRK on a combined dataset,
Z =

(
Z1
′,Z2

′)′, with change of support and bias correction. (Nguyen,
Cressie, and Braverman, 2010).
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The Spatial Random Effects Model

I Our interest is not really in the fusion coefficients (the a’s). It’s in Ŷ (s) and
its standard error.

I An alternative formulation:

Y (s) = µ(s) + ν(s) + ξ(s).

Trend
Spatial

covariance

Fine-scale
variation Estimate these from footprint-

level data from both sources.

Ŷ (s) = µ(s) + ν̂(s) + ξ̂(s).

I In particular, express ν(s) as a linear combination of elements of a hidden
structure variable, η:

ν̂(s) = S(s)′η̂,

S(s) is a known weight vector for location s, and η is low-dimensional.
(Note: Cov(Y (si),Y (sj)) = Cov(ν(si), ν(sj)).)
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The Spatio-Temporal Random Effects Model

I Now we introduce time by letting η evolve according to an order 1
autoregressive process:

ηt+1 = Ht+1ηt + ζ t+1,

where H is a non-stochastic “propagator” matrix, and ζ is an innovation
vector that is independent of η.

I At each time step we produce the “forecast” using the equation above, and
use an empirical Bayesian formalism to update it after seeing the
footprint-level data from both sources.

I We use a Kalman Filter on η to update its estimate as data for additional
time points are acquired. (Technical point: the estimate of ξ(s) also needs
to be filtered since ξ(s) is jointly distributed with the estimate of η.)

I Ŷ (s, t) = µt(s) + S(s)′η̂t|t + ξ̂t|t(s), “t |t” indicates using all data up to and
including time t . This is called Fixed Rank Filtering (FRF; Cressie, Shi, and
Kang, 2010).
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Spatio-Temporal Data Fusion (STDF)

I Conceptually, STDF can be thought of as FRF on a combined dataset,
Z =

(
Z1
′,Z2

′)′, with change of support and bias correction.

I Coming soon: STDF based on Fixed Rank Smoothing (FRS; Katzfuss and
Cressie, 2011) uses all the data during the period, not just data through
time t . Allows estimates to be made for shorter time increments.
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STDF for Vector Processes

t = 1

t = 2

t = 3

t = 4

Y1(·) Y2(·) Z2(·)Z1(·)

Suppose the object of inference
is a pair:

Y(s0) = (Y1(s0),Y2(s0))
′.

Everything generalizes but now
there are inter-variable as well as
inter- and intra-dataset covariances.

(N.B.: With more than two vector
components, mathematics and
computation become much
more complex and intensive.)
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Example: ACOS/GOSAT and AIRS CO2

I Y1(s0, t) = total column
CO2 volume mixing ratio
(VMR).

I Y2(s0, t) =
mid-troposphere VMR.

I Estimate:

X = f1Y1(s0, t)− f2Y2(s0, t),

f1 = (1000− 300)/(1000− 500),

f2 = (500− 300)/(1000− 500)

(f1 and f2 adjust for volume
differences in pressure
units.)

AIRS footprint grid

~ 700 km

~ 1500 km

GOSAT footprint 
~ 10 km diameter,  
~ 150 km apart

~ 700 km

AIRS footprint
~ 90 km diameter

~ 
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Instrument sensitivity

13



Example: ACOS/GOSAT and AIRS CO2
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Example: ACOS/GOSAT and AIRS CO2
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Example: GOSAT and AIRS CO2

I 500-750 AIRS retrievals over the continental US every three days during
summer 2010. Estimated measurement bias is zero, estimated
measurement error standard deviation is 1.87 ppm.

I 90 ACOS retrievals over the continental US every three days during
summer 2010. Estimated bias is -8 ppm, estimated measurement error
standard deviation is 5 ppm.

I Estimation grid is 1◦ × 1◦.

I These results are based on the FRS version of STDF, using the EM
algorithm for estimation. (Results in the ESTF paper are based on FRF
with binned method-of-moments estimation.)

I Computation time: about 24 minutes for this three-month analysis on 2.8
GHz MacBook Pro.
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Validation (a start)

Comparison of STDF estimates with NOAA 
aircraft flights.

NOAA data courtesy of Colm Sweeney, ESRL

(Colorbars show aircraft sampling altitude.)

Beaver Crossing, NE Lamont, OK

17



Conclusions

I FRS + EM = shorter time increments (3 days); better to capture dynamics.

I Just starting “validation” now. First results are not discouraging, but there
are indications that our estimates are too low (especially outside of JJA).

I Need to incorporate instrument sensitivities into the formula for X .

I Method is fast: suitable for very large remote sensing data sets thanks to
the STRE model.

I The ACOS/GOSAT and AIRS case is interesting because offers the
possibility of combining two instruments’ data to derive an estimate of
something neither one observes directly: CO2 concentrations in the lower
atmosphere. This may be related to CO2 flux from the surface.
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The end

Questions, comments?

Contact Amy.Braverman@jpl.nasa.gov.

Support for this work is provided by NASA’s Earth Science Technology
Office through its Advanced Information Systems Technology Program.

This work was performed at the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics and Space
Administration. Copyright 2011, all rights reserved.
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